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This exercise culminated from the final project of the Structured Product and Hybrid Securities I
enrolled in Fall 2018. The instructor was Professor Alireza Javeheri. I am intending to price the
following pay-off. As of January 9% 2019, this project is incomplete.
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Where r,;(t) is the OIS rate, S; is the Stoxx50E Index, X is the USD-EUR exchange rate, K is
the strike, L 1(t) is the LIBOR rate between T; and T; + i t<T,<T; + i < T)and B is

the barrier level.

I consider a multi-curve approach to model forward LIBOR and OIS curve. I assume Forward
LIBOR follows a shifted LMM, and OIS evolves according to a Hull-White model. I calibrate
the shifted LMM model using Black-76 Formula and OIS parameters by minimizing the
volatility of the LIBOR-OIS basis. Stoxx50 Index is modeled by the two factor Bergomi model.
To be more precise, I apply the Bergomi model to Stoxx50 Index in USD by adjusting for the
foreign exchange rate. Resulting process has an advantage of being a martingale under a
domestic (US) risk neutral measure. For calibration of Stoxx50 Index, I adopt a version of the
particle method suitable for SLV and stochastic short rates. This requires the Dupire local
volatility, which I obtain from the SVI interpolation.

As arecap, the ADR stock follows the following stochastic process. db:tf = §tf (rd dt +
(O'X + af)th) where S tf = Stf X¢, oy is the volatility of foreign exchange rate X, and oy is the
volatility of the foreign stock Stf .

1. Model specification
1.1. Shifted LIBOR Market Model (SLMM)

Firstly, we observe that L; (t) is martingale under Q7/ with P(t, T-) as the numeraire.
7; lP(Tj—l'Tj—l) _ l _ 1 P(tT)
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Thus, it makes sense to have a driftless shifted LMM dynamics:
dL;(t) = L;j(®)a;(t)aw; (t)

where L;(t) = L;(t) + a;, dW;(¢t) is Q"J-Brownian Motion. a; adjusts for skewness.
Since I utilize a single factor SLLM, d<Wj, VVi)t = dt.
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The drift of L;(t) under Q is given by £ Tt could be derived from the

aQ’s _ p(1;1;)/P(0.Tf)
aQ B(T;)/B(0)
@, is the volatility of In (B(¢)/P(t,T;) ). Then,
dL;(t) = —9L;();(dt + o;()L;(©)dW 2 (t)
d<Lj(~),ln(B(~)/P(~,Tj))>t
dt

dt
with dAWQ(t) = ¢, dt + dW;(t)

Girsanov Theorem.

which is consistent with

1.2. OIS dynamics
I assume that an instantaneous OIS rate r(t) follows the Hull-White model.
r(t) = x(t) + a(t)
dx(t) = —ax(t)dt + o, (t)dZ(t),x(0) =0
Z is Q-Brownian Motion

This gives
t

x(t) = e‘atf e™a,.(u)dZ(u)
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And,

x(T) = x(t)e aT-0 4 e‘an e®g(uw)dZ(u)

t
Thus, E[x(T)|F,] = x(t)e™*T~9 and V[x(T)|F,] = e 247 [ e2@02(w)du

Also, integrating dx(t) from T to t gives,
T

ft x(uw)du = _ia(x(T) — x(t)) + %ft o(w)dZ(u)

Substituting in x(T), we have
T

f x(uw)du = B(t, T)x(t) +f o(w)B(u, T)dZ(u)
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where, B(t,T) = L

Therefore,
E[f] x@du|F| = Bt T)x(t) and V |[] x@)du|F.| = [] 6> w)B, T)?du
e

And, using Gaussian property, we have
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Then,
P(t, T) =E [e—fth(u)duI:Ft] e—ftTa(u)du
= A(t, T)e-BEDx®) o~ I, atwau
This gives,



ft a(u)du = —B(t, T)x(t) + lnﬁg: g
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Thus,
PLT) = A(t,T)A(0,t) P(0,T) BT

A(0,T) P(0,t)
To model LIBOR-OIS Basis, we want to model the OIS forward rate.
The forward rate is defined as

1 (P(t,T;_,)
F](t) = E(P(T{T) - 1) where T = T] - Tj—l
From the formula for P(¢t, T) we obtain
P(t' Tj—l) _ P(O'Tj—l) A(O' T') 1 (B(t,Tj)—B(t,Tj_l))x(t)

P(tT)  P(0,T) A(0.T-)A(TT;)"
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where, Z;(t) is Q7/-Brownian Motion. We have zero drift by the choice of the numeraire.
Thus, combining the result,

1
dF;(t) = (Fj(t) + ;> (B(£T) - B(£T;-1) ) 0, ()dZ;(2)
J
And, d(W}, Z;), = p,rdt
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1.3. LIBOR-OIS Basis
The multiplicative LIBOR-OIS Basis is defined as
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Clearly, this definition is derived from following relationship between variables.
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1.4. Bergomi two factor model
The Bergomi model presented in this section is the particular type that we discussed in the class.
It falls into the class of Stochastic Local Volatility models that not only tries to capture stochastic
nature of the volatility, but also ensures consistency with the Dupire local volatility. Unlike the
model in the class, however, I assume all the stochastic characteristics are driven by Q7J-
Brownian Motions instead of Q-Brownian Motions because we account for stochastic interest
rates. The model is as following:

af(t) = \/?fa(t,P(t, ) () fF(®)dWSE (t) + B(t, T)o,dZ(t)
dX! = —k,X}dt + dW},
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2. Calibration
2.1. Calibration procedures for SLLM

The calibration procedure is standard. We use Black’s formula for caplets. The approach is as
following:

T
capl]B (t) =E [e_fr Tr(wdu Tj max(Lj(Tj_l) — R, O)

P(t'Tj—1)
P(t,T}) B
capl? (t) = 1;P(t, T;)E"/[max(L;(Tj-,) — R,0) | ¥ |
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Since L;(t) = l( 1) is QT/-Martingale because P(t, T-) is the numeraire. Thus,

T

Then, Black-Scholes formula gives
caplf(t) = 7;P(t,T;) (L;(t)N(dy) — RN(dy)
j
In(L;(6)/R)+5 o} (T;—t)

oj /Tj—t

where, d; = andd, =d, —0;,/Tj — t



Calibration for the SLLM is carried out by equating the ATM SLLM with the ATM LLM.

7;P(0,T;) (25,(0)1v (%a] T, — t) — 1) =1;P(0,T}) <2L,-(0)1v (% a]{*LTL%m) — 1)
Using the Taylor approximation to the normal distribution, N (x) = % + \/%, we have
L)
7 Li(0) +
To simplify the computation further for this project, I assume a; = —

i T

ATM :
o L.mm 18 available on Bloomberg.

However, the problem of this project is a little bit more complicated in the sense that we want to
simulate cashflows using QT but barrier condition is based on Q™ where T > Tj.

i-1 _ d@i_l _ P(t' Ti—l)/P(Ol Ti—l)
e = dQi | "t P(,T)/P(0,T)

This implies,
P(0,T;)
P(0,T,_y) T;_1

O' i
If()(()—T_i)TiLi(t)ai(t)dm(t)
i-1 l 7;L;(t)

‘ (1 + TiLi(t))

Q') = ) —— - (1+ 1,L(D)
doi™'(®) =
o;()dw;(¢)

By the definition of Q! (¢).

The Girsanov theorem suggests dW;(t) = % o;(t)dt + dW,_,(t)
T;L;(t)
dW-(t) = ——— = o;(t)dt + dWr, (t
0= 2, Trenm) O Hn®
T <i<T
Thus, Ly, should be simulated using

7;L;(t)o;(t)

dLr, (t) = — Ly, (o, (t) dt + Ly, () or, () dWy (1)
Ty <i<T (1 + TiLi(t))

Then,
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And, forT; <i<T

L) =Li(0)exp| - z CION
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2.2. Calibration procedures for OIS

We want to calibrate OIS curve by minimizing the instantaneous volatility of the multiplicative
basis defined in 1.3.

(B(t, T)) - B(t, T,-_l))2 (L,-(t) + %)2
(1+550®)
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Then, the first order and the second order conditions tell us that the instantaneous variance takes
the minimum when

dt

PL,FUj(t)E](t)
(B(t, T;) — B(t, Tj_l)) (Lj(t) + %)

Due to the complexity of this project, I will assume o, (t) = o, is a constant and calibrate o, as:
O.ATM L (0)
PLFOT,LMMLT

~ (BO.T)-B(O,T) (Lr@ +7 —1T1)

where T is the trigger date for the barrier and T is the maturity.

oy (t) =

Or

2.3. Calibration procedures for implied volatility surface (SVI)

To calibrate the volatility surface of the Stoxx 50 Index options, I adopted the procedures
outlined in “Quasi-Explicit Calibration of Gatheral’s SVI model,” by Zeliade Systems. SVI
parametrizations is as following:

v(x) =ois(x) =a+b (p(x —m) +(x—m)? + 02)
Where x = In(K /Fy).
Defining v = Tv,y =

xX—m

¥ = 2 — — -
—,9(y) = aT + baT(py +/y? + 1), ¢ = baT,d = pboT,a = aT.

Then, ¥(y) =d+dy +cyy? +1

Step 1 involves following optimization for each maturity.
n

2
minz<d+ dy; + ¢ /ylz +1 —ﬁi>
ad,c =
Subject to
0<c<4c
|d| < cand|d| <40 —c
0<a < maxd,



With an initial choice of ¢ and m
Suppose the optimal solution of the problem is (a*, d*, c*)

Step 2 is the following optimization problem

n
_ _ (x; —m) X; — My 2 _
mlné a+d ——— +c” ( ) +1-—-7;
m,o o o

i=1

Then, we can obtain the Dupire local volatility from the equation (2.19) of Stochastic Volatility
Modeling by Lorenzo Bergomi.

2.4. Calibration procedures for the two factor Bergomi model and the generalized
Dupire

Calibration is based on the static replication formula for variance futures using standard options.
For example, VSTOXX futures with STOXXS50E options or VIX futures with SP500 options.

Either (3.6) in Bergomi (2016) or (11.19) in Derman (2016) gives the static replication formula
for an asset V.

oV(K, T Kog2y (K, T
V(S,T) = V(K,,T) +(—) (S —Kp) +f oVK,T) (K —S)* dK
oK 0 0K? ——
K=K, P(S,t=T,K,T)
® 32V (K, T
+ f (—2) (S —K)* dK
(S,t=T,K,T)
Let V = SZ. Then,
KO co

0 Ko
Thus, when the underlying asset S; is the VSTOXX futures contract FtTi that matures at T; 1.
Taking E[- |F,] on both sides gives the forward variance &,

6257, () = E [(FTTii)Z ?t]

Ko
= K& + 2K, (F — K,) + f 2E[(K — Sp)*|F.] dK
0

+ fooz E[(S; — K)*|F.]dK

0

2 Ty o
Then, 6-I;ST,TL- (t) = (FtTl) + fOFt ZE[(K - ST)+|Tt] dK + fFTi 2 E[(ST - K)+|j:t]dK
t

By letting K, = FtT".

! By the discussion in Appendix 5.1, FTTii = |67srr,(TD.



Calibration is carried out by modeling the forward variance. However, at the time of writing this
project, I was under a substantial time constraint. Thus, I adopted following parameter estimates
from Nonlinear Option Pricing by Guyon and Pierre-labordere.

ki =4k, = 12.5%, px1 52 = 0.3,p5x, = —=50%, psx, = —50%, 60 = 22.65% v = 174%
Then, the deviation of volatility from the Dupire volatility will be adjusted by the particle
methods during the simulation.

Following Guyon and Henry-Labordere (2013), we can generalize the Dupire equation to
incorporate stochastic interest rates and SLV.

Claim 12
ds
S_: =1 dt +o(t,S,) [{EdW,
Can be calibrated exactly to the market smile if and only if
t t
o(t,K)*E [e‘fo rwdu gt |St = K] E [e‘fo rwaw (. _ £(o,t) |St = K]
3 = O-l%upire (t' K)Z - 1
E [e_fo r(wdu |St = K] —Ka,fC(t, K)

2
OmPOL and ¢ (t, K) is the ordinary option price

Where (0, t) is the instantaneous forward rate
in the market.

To prove claim 1, if I denote C,,(t, K) as the option price from a model, the dynamics of
C(t, K) should equal that of C(t, K).

t
Let’s define P, = e~ Jorwdu (S, — K)I(S; > K).

Then,
oP
a a—tt = —r(t)P,dt
P
o = e hTA(S, > ) + e~ (5, — K)S(S, — K)
t

= e_f()tr(u)du H(St > K)
xS(x)oni)y dirac
delta properties
0%P, t
— o= Jyrwadu —
=e o 0(S; — K

Thus, applying the [t6 lemma,
t t
dP, = e "W (S, > K)r,Kdt + e o TN (S, > K)S,(r,dt + (ta(t,S,)AW,)
1 t
+5K¥a(t, K)2e lor@au s(s. — K)dt

2 Change of measure gives
df—ft =o(t, St)\/f_tt dW,I + o0, B(t, T)dZT because a forward contract is martingale under Q7.
t
For a quanto, it would be df—ft = (rf — 1, — oxo(t, St)) dt +a(t, St)\/(—ttthT +0,B(t,T)dZT
t

where 75 is the OIS rate in foreign currency, 7y is the OIS rate in domestic currency, and oy is the volatility of
exchange rates. The drift arises from the quanto correction ;. — (¢, S¢).



Assuming we are working with a strict martingale rather than a local martingale,

ded(tt,K) —E [e—fotr(u)du ]I(St > K)(Tt _ f(O, t))K] +E [e—fotr(u)du ]I(St > K)] Kf(O, t)

1
+5K20%(6 K)E [e_ forandu ctg (s, — K)]

Assuming the interchange of differentiation and expectation is justified, for example by
dominated convergence, and the partial derivatives, I have

t
o(t, K)?E [e~lor@du gt | s, = k| , E [e—fot rdu (v, — £(0,1))| S, = K|
= Opupire (t' K)Z - 1

E [e—fotr(”)d“ |5, = k| SKZC(t,K)

Everything should follow from the definition of the Duper local volatility. In a similar manner,
we change the measure and obtain
o(t,K)? =

E[P(t,T)*(r — f(O,0) IS, = K]\ E[P(t,T)™" IS, = K]

TKIZC(K) E[P(6T)7 ¢ IS = K]

O-l%upire (t' K) - P(O: T)

3. Simulation Procedure
Since for this project, we need to simulate LIBOR in addition to section 2.4. Therefore,

tk+1 tk+1
(Wtiﬂ - W{Z,f e~ d 7, (u) 'f B(w, T)dZr(w), Wy (tr1) — Wr(ty),
t t

k k
1 _ il 2 2
Wtk+1 Wtk, Wtk+1 Wtk>

Which is a Gaussian vector with covariance matrix Zj (ty4, — ti) with

1 Psplc  PsplE e, ,r Ps,L Psx1  Psx,
pS,P]I% ]13 Ly pL,F]I% 0 0
Zk — pS,PIl'Zk,tk+1,T1 Lk Il:'lk,tk+1,T pL,PIl'Zk,tk+1,T 0 0
Ps,L pL,F]I% 2 pL,PItZk,tk+1,T 1 0 0
Ps x, 0 0 0 1 Px,,x,
Ps x, 0 0 0 Px, x, 1
Where
L 1— e—a(tk+1—tk)
Jk =
a(tys — ti)
1— e—za(tk+1—tk)
i =

2a(tysq — ty)

1 2at _ p2at
Lk = ]—k —_ e_a(T_tk+1) € i e ‘
a 2a%(tyyr — ti)




For the rest of this section, for any variable ¢, ¢p*"is defined as the i path from N simulation
paths.

1 S — . .
oy (t,8)? = <agupire ) = PO.1) 3 (R (5N - r0,0)1(sH > 5))
i -1 .
L1(Rr) Sen(s” - 5)

*
(PLN ( tti,N)Z 5t,N(Sti'N %)

1 X
1) —K
t,N(x) htN (htN>

1 1
hey = 1.5f(t, T)Uvs,t\/nmlvs

15N
K(x) = ?(1 — Nx?)2I(|Nx| < 1)
The choice of the kernel and h; y are from Guyon and Henry-Labordere (2013).

Where

tk+1
Tepe1 — f(O' tk+1) = (rtk - f(O, tk)) e~ a(ti+1=tK) 4 o—atksr f area”dZ(u)
t
t

tk+1
+e‘atk+1f o2e™B(u, ty,)du — e‘atk+1f o2e™B(u,t,)du
0 0

where, from the discussion of the drift term in section 1.1, dZ(u) = B(u, T)o,du + dZ;(u)
Therefore,

o? 1
Teer1 — f(0,6qq) = (Ttk - f(0, tk)) e~ (tkr1~ti) 4 ;rB(tk' tr+1) (1 - Ee_aT)
1
+ac? (1§ trs bt I(},tkﬂ,tkﬂ)tkﬂ + g e~ trati) (EB(O'Ztk) — B(0, tk))

tk+1
—at au
+e k+1f ore™dZ(u)
tk

Where,
L B 1 tk+1 5
Lty = —tk+1 e B(u,T)*du

a(tk+1 _ tk) _ ze—aT(eatk+1 _ eatk) + %e—aT(eZatk_,_l _ eZatk)

B a3 (tgsr — ty)

a(tisr — ti) — e~ (e k+1 — e%k)

a?(tgsr — ty)

5 1 tk+1
L e —tr f B(u,T)du =

And,

X(tes1) = 7(tes1) = f(0, tyyr) — ac? (Ig,tkﬂ,tkﬂ - I(},tk+1,tk+1)tk+1
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P(0,t,) A(O,t A(tg1, T
b Ty = b, 1) L O AQb1) At T)
P(Oltk+1) A(Oltk) A(tle)

P(Oltk) O-_Tg
e

1 1 1
> (_Itk,tk+1,T(tk+1_tk)+10,tk+1,tk+1tk+1_10,tk,tk fk)e —(B(tg+1.T)x(tp+1)—B (. Tx(ty))
P(O, tk+1)

Then, we have all the ingredients for the forward contract.

e —(B(tg+1,T)x(tg41)—B(tr,T)x(tx))

= P(tkl T)

tk+1

fton, =t €XP| On (tk: (Ptk,T)_lftk) \[%(W’fq(tk+1) — WTS(tk)) + o, f B(u,T)dZr(u)

k

3 (trs1 — i) (01\21 (tk: (Ptk,T) ftk) t,’: + Urzltlk,tk+1,T(tk+1 — &)

+ 2ps poroy (tk: (Ptk,T) ftk) /(t:Itzk,tk+1,T(tk+1 - tk))

To obtain LIBOR rates for the barrier, I simulate, forT; < i < T
~ ~ t T]Z] (S) 1 t t
Lo =L@en( - Y [ — L2 gs)ds -3 [ alsds + [ ai()awy(s)
i<J=T 0 (1 +T]L](S)) 0 0
Then, based on the estimates, I obtain
onLi(s)

1t t
L do mm@) ds ——fo or, (s)ds + fo or, (s)dWr(s)

L5,(®) = L7, (0) exp >

Obtaining the price of the option then becomes the mean of the simulated payoffs multiplied by
the discount factor.

4. Numerical Result

Time to

Expiration ¢ 9 mn b p RMSE
0.079 0.0001 0.3579 -0.0259 88.9779 -0.0028 0.1979
0.0357 0.0000 0.3723 -0.0255 59.9774 -0.0133 0.3079
0.0635 0.0000 0.2963 -0.0308 71.4296 -0.0188 0.3462
0.0913 0.0000 0.3128 -0.0303 61.0879 -0.0285 0.4459
0.1746 0.0000 0.3615 -0.0269 49.8549 -0.0631 0.6595
0.2857 0.0000 0.4145 -0.0238 41.8364 -0.1184 0.7438
0.3968 0.5223 0.4312 -0.0194 37.9090 -0.1711 0.7494
0.5317 2.6847 0.3900 -0.0200 35.2353 -0.2074 0.2732
0.6468 3.8026 0.3870 -0.0208 31.3483 -0.2503 0.6212
0.7857 5.0093 0.3853 -0.0209 27.9759 -0.3027 0.5454
1.1468 6.9670 0.3640 -0.0212 23.8577 -0.4174 0.2781
1.5079 8.1826 0.3565 -0.0216 20.8635 -0.5375 0.3256
2.2302 9.5053 0.3702 -0.0212 15.9427 -0.8256 0.2650
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SVI Implied Volatility for the Dupire Local Vol

1200

1180
250
1 160

200
<140

150 120

100 100

Implied Volatility

50 80

60

40

20
1 0
-0.5
Tau 0 -1 Moneyness

The logic of the computation is clear. To obtain the price of a particular option specification, we
can use the Monte Carlo simulation.

5. Appendix

5.1. Elaborating notions introduced in the calibration of the Bergomi model
The Bergomi model attempts to capture the joint dynamics of the spot and its implied forward
Variance Swap (VS) variances. To be more precise, Variance Swap (VS) volatility 6y (t) is
defined as a constant such that the fair value of a variance with the following payoff is zero at the
initial time ¢t.

N-1
1 S,
VS payoff: 6257 (t) — T—t In® < (Hl))
i=0

Then,

T,—1 S

Z In® <%) B (62VS,T2 (O, = t) = 6%ysr, (O(Th - t))

=T '
Such that

A2

0%ys () =

7 (875 (O(T2 = 0 = 657, (O(T, - 0))

Is called the discrete forward variance. Clearly, the continuous analog of the discrete forward
variance is

(7 = (7= 0575, )
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In practice, VIX futures and VSTOXX futures have the expiration value of the 30-day variance
swap volatility of the SP500 and STOXXS50, respectively. Thus, VIX futures quotes at time 0 are
used as proxies for {§ when S, is the S&P500 Index based on 62y 1744 (0).
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